In this chapter, we will discuss regarding the Density and Hubble parameters.
Hubble Parameter
The Hubble parameter is defined as follows −
$$H(t) equiv frac{da/dt}{a}$$
which measures how rapidly the scale factor changes. More generally, the evolution of the scale factor is determined by the Friedmann Equation.
$$H^2(t) equiv left ( frac{dot{a}}{a} right )^2 = frac{8pi G}{3}rho – frac{kc^2}{a^2} + frac{wedge}{3}$$
where, ∧ is a cosmological constant.
For a flat universe, k = 0, hence the Friedmann Equation becomes −
$$left ( frac{dot{a}}{a} right )^2 = frac{8pi G}{3}rho + frac{wedge}{3}$$
For a matter dominated universe, the density varies as −
$$frac{rho_m}{rho_{m,0}} = left ( frac{a_0}{a} right )^3 Rightarrow rho_m = rho_{m,0}a^{-3}$$
and, for a radiation dominated universe the density varies as −
$$frac{rho_{rad}}{rho_{rad,0}} = left ( frac{a_0}{a} right )^4 Rightarrow rho_{rad} = rho_{rad,0}a^{-4}$$
Presently, we are living in a matter dominated universe. Hence, considering $rho ≡ rho_m$, we get −
$$left ( frac{dot{a}}{a} right )^2 = frac{8pi G}{3}rho_{m,0}a^{-3} + frac{wedge}{3}$$
The cosmological constant and dark energy density are related as follows −
$$rho_wedge = frac{wedge}{8 pi G} Rightarrow wedge = 8pi Grho_wedge$$
From this, we get −
$$left ( frac{dot{a}}{a} right )^2 = frac{8pi G}{3}rho_{m,0}a^{-3} + frac{8 pi G}{3} rho_wedge$$
Also, the critical density and Hubble’s constant are related as follows −
$$rho_{c,0} = frac{3H_0^2}{8 pi G} Rightarrow frac{8pi G}{3} = frac{H_0^2}{rho_{c,0}}$$
From this, we get −
$$left ( frac{dot{a}}{a} right )^2 = frac{H_0^2}{rho_{c,0}}rho_{m,0}a^{-3} + frac{H_0^2}{rho_{c,0}}rho_wedge$$
$$left ( frac{dot{a}}{a} right )^2 = H_0^2Omega_{m,0}a^{-3} + H_0^2Omega_{wedge,0}$$
$$(dot{a})^2 = H_0^2Omega_{m,0}a^{-1} + H_0^2Omega_{wedge,0}a^2$$
$$left ( frac{dot{a}}{H_0} right )^2 = Omega_{m,0}frac{1}{a} + Omega_{wedge,0}a^2$$
$$left ( frac{dot{a}}{H_0} right )^2 = Omega_{m,0}(1+z) + Omega_{wedge,0}frac{1}{(1+z)^2}$$
$$left ( frac{dot{a}}{H_0} right)^2 (1+z)^2 = Omega_{m,0}(1+z)^3 + Omega_{wedge,0}$$
$$left ( frac{dot{a}}{H_0} right)^2 frac{1}{a^2} = Omega_{m,0}(1 + z)^3 + Omega_{wedge,0}$$
$$left ( frac{H(z)}{H_0} right )^2 = Omega_{m,0}(1+z)^3 + Omega_{wedge,0}$$
Here, $H(z)$ is the red shift dependent Hubble parameter. This can be modified to include the radiation density parameter $Omega_{rad}$ and the curvature density parameter $Omega_k$. The modified equation is −
$$left ( frac{H(z)}{H_0} right )^2 = Omega_{m,0}(1+z)^3 + Omega_{rad,0}(1+z)^4+Omega_{k,0}(1+z)^2+Omega_{wedge,0}$$
$$Or, : left ( frac{H(z)}{H_0} right)^2 = E(z)$$
$$Or, : H(z) = H_0E(z)^{frac{1}{2}}$$
where,
$$E(z) equiv Omega_{m,0}(1 + z)^3 + Omega_{rad,0}(1+z)^4 + Omega_{k,0}(1+z)^2+Omega_{wedge,0}$$
This shows that the Hubble parameter varies with time.
For the Einstein-de Sitter Universe, $Omega_m = 1, Omega_wedge = 0, k = 0$.
Putting these values in, we get −
$$H(z) = H_0(1+z)^{frac{3}{2}}$$
which shows the time evolution of the Hubble parameter for the Einstein-de Sitter universe.
Density Parameter
The density parameter, $Omega$, is defined as the ratio of the actual (or observed) density ρ to the critical density $rho_c$. For any quantity $x$ the corresponding density parameter, $Omega_x$ can be expressed mathematically as −
$$Omega_x = frac{rho_x}{rho_c}$$
For different quantities under consideration, we can define the following density parameters.
S.No. | Quantity | Density Parameter |
---|---|---|
1 | Baryons |
$Omega_b = frac{rho_b}{rho_c}$ |
2 | Matter(Baryonic + Dark) |
$Omega_m = frac{rho_m}{rho_c}$ |
3 | Dark Energy |
$Omega_wedge = frac{rho_wedge}{rho_c}$ |
4 | Radiation |
$Omega_{rad} = frac{rho_{rad}}{rho_c}$ |
Where the symbols have their usual meanings.
Points to Remember
-
The evolution of the scale factor is determined by the Friedmann Equation.
-
H(z) is the red shift dependent Hubble parameter.
-
The Hubble Parameter varies with time.
-
The Density Parameter is defined as the ratio of the actual (or observed) density to the critical density.
Learning working make money