Let $f:Srightarrow mathbb{R}$ be a differentiable function and S be a non-empty convex set in $mathbb{R}^n$, then f is said to be pseudoconvex if for each $x_1,x_2 in S$ with $bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )geq 0$, we have $fleft ( x_2 right )geq fleft ( x_1 right )$, or equivalently if $fleft ( x_1 right )>fleft ( x_2 right )$ then $bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )
Pseudoconcave function
Let $f:Srightarrow mathbb{R}$ be a differentiable function and S be a non-empty convex set in $mathbb{R}^n$, then f is said to be pseudoconvex if for each $x_1, x_2 in S$ with $bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )geq 0$, we have $fleft ( x_2 right )leq fleft ( x_1 right )$, or equivalently if $fleft ( x_1 right )>fleft ( x_2 right )$ then $bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )>0$
Remarks
-
If a function is both pseudoconvex and pseudoconcave, then is is called pseudolinear.
-
A differentiable convex function is also pseudoconvex.
-
A pseudoconvex function may not be convex. For example,
$fleft ( x right )=x+x^3$ is not convex. If $x_1 leq x_2,x_{1}^{3} leq x_{2}^{3}$
Thus,$bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )=left ( 1+3x_{1}^{2} right )left ( x_2-x_1 right ) geq 0$
And, $fleft ( x_2 right )-fleft ( x_1 right )=left ( x_2-x_1 right )+left ( x_{2}^{3} -x_{1}^{3}right )geq 0$
$Rightarrow fleft ( x_2 right )geq fleft ( x_1 right )$
Thus, it is pseudoconvex.
A pseudoconvex function is strictly quasiconvex. Thus, every local minima of pseudoconvex is also global minima.
Strictly pseudoconvex function
Let $f:Srightarrow mathbb{R}$ be a differentiable function and S be a non-empty convex set in $mathbb{R}^n$, then f is said to be pseudoconvex if for each $x_1,x_2 in S$ with $bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )geq 0$, we have $fleft ( x_2 right )> fleft ( x_1 right )$,or equivalently if $fleft ( x_1 right )geq fleft ( x_2 right )$ then $bigtriangledown fleft ( x_1 right )^Tleft ( x_2-x_1 right )
Theorem
Let f be a pseudoconvex function and suppose $bigtriangledown fleft ( hat{x}right )=0$ for some $hat{x} in S$, then $hat{x}$ is global optimal solution of f over S.
Proof
Let $hat{x}$ be a critical point of f, ie, $bigtriangledown fleft ( hat{x}right )=0$
Since f is pseudoconvex function, for $x in S,$ we have
$$bigtriangledown fleft ( hat{x}right )left ( x-hat{x}right )=0 Rightarrow fleft ( hat{x}right )leq fleft ( xright ), forall x in S$$
Hence, $hat{x}$ is global optimal solution.
Remark
If f is strictly pseudoconvex function, $hat{x}$ is unique global optimal solution.
Theorem
If f is differentiable pseudoconvex function over S, then f is both strictly quasiconvex as well as quasiconvex function.
Remarks
-
The sum of two pseudoconvex fucntions defined on an open set S of $mathbb{R}^n$ may not be pseudoconvex.
-
Let $f:Srightarrow mathbb{R}$ be a quasiconvex function and S be a non-empty convex subset of $mathbb{R}^n$ then f is pseudoconvex if and only if every critical point is a global minima of f over S.
-
Let S be a non-empty convex subset of $mathbb{R}^n$ and $f:Srightarrow mathbb{R}$ be a function such that $bigtriangledown fleft ( xright )neq 0$ for every $x in S$ then f is pseudoconvex if and only if it is a quasiconvex function.
Learning working make money