JOGL – Appendix ”; Previous Next GPU − Graphical processing unit, it is a special electronic device that accelerates the rendering of images. JNI − Java Native Interface. Using which, java access native methods. Model − They are the objects constructed from basic graphics primitives such as points, lines and polygons. Pixel − Smallest unit of display seen on the screen. Projection − The method of mapping the coordinates of an object to a two-dimensional plane is called projection. Projection matrix − It is a linear transformation of an object on the 2D surface. Rendering − A process by which computer creates images from models. Viewport − A viewport is a viewing region on the screen in computer graphics. Print Page Previous Next Advertisements ”;
Category: jogl
JOGL – Quick Guide
JOGL – Quick Guide ”; Previous Next JOGL – Overview This chapter introduces OpenGL, its functions, the OpenGL bindings in java (GL4java, LWJGL, JOGL), and the advantages of JOGL over other OpenGL bindings. Java binding for OpenGL (JOGL) is the recent binding for OpenGL graphics API in Java. It is a wrapper library, which can access OpenGL API, and it is designed to create 2D and 3D graphics applications coded in Java. JOGL is an open-source library initially developed by former MIT graduate students Ken Russell and Chris Kline. Later, it was adopted by the gaming group at Sun Microsystems, and now it is maintained by Java on Graphics Audio and Processing (JOGAMP). JOGL functions on various operating systems such as Windows, Solaris, Mac OS X, and Linux (on x86). What is OpenGL? OpenGL stands for Open Graphics Library, which is a collection of commands to create 2D and 3D graphics. With OpenGL, you can create complicated 3D shapes using very basic primitives such as points, lines, polygons, bitmaps, and images. Here are a few features of OpenGL − It can work on multiple platforms. It has bindings in several languages such as C++, Python, etc It can render 2D and 3D vector graphics. It interacts with Graphical Processing Unit (GPU) for achieving speedy and high quality rendering. Rendering is the process of creating an image from a 2D or 3D model. It is an industry standard API for writing 3D Graphics applications. For example, games, screensavers, etc. It contains around 150 commands, which programmers can use to specify objects and operations to develop applications. It contains OpenGL Utility Library (GLU) that provides various modeling features, such as quadric surfaces and NURBS curves. GLU is a standard component of OpenGL. The design of OpenGL is focused on efficiency, effectiveness, and its implementation on multiple platforms using multiple languages. To maintain simplicity of an OpenGL API, windowing tasks are not included. Therefore, OpenGL depends on other programming languages for windowing tasks. Java Binding for OpenGL API It is a Java Specification Request (JSR) API specification, which allows to use OpenGL on Java platform. Specifications Details JSR 231 This Java binding package supports Java SE platform. JSR 239 This Java binding package supports Java ME platform. There are various OpenGL bindings in Java. They are discussed below GL4java It is known as OpenGL for Java technology. It has links to OpenGL 1.3 and to nearly all vendor extensions. Also, it can be used with Abstract Window Toolkit (AWT) and Swings. It is a game focused OpenGL binding, which is a single window that displays full screen applications. LWJGL Light Weight Java Game Library (LWJGL), uses OpenGL 1.5 and works with latest version of java. It can use full screen capabilities of JSE 1.4. It has limited support for AWT/ Swings. It is suitable for lightweight devices such as mobile phones, embedded devices, etc. JOGL JOGL focuses only on 2D and 3D Rendering. The interfaces dealing with sound and input-output are not included in JOGL. It includes Graphics Utility Library (GLU), GL Utility toolkit (GLUT), and its own API – Native Windowing Toolkit (NEWT). Why JOGL? It provides full access to the OpenGL APIs (version 1.0, 4.3, ES 1, ES 2 and ES 3) as well as nearly all the vendor extensions. Hence, all the features in OpenGL are included in JOGL. JOGL integrates with the AWT, Swing, and Standard Widget Toolkit (SWT). It also includes its own Native Windowing Toolkit (NEWT). Hence, it provides complete support for windowing. History of JOGL 1992 − Silicon Graphics Inc. released the first OpenGL specification. 2003 − Java.net website was launched with new features and JOGL was published for the first time on the same website. 2010 − Since year 2010, it has been independent open source project under BSD license, which is a liberal license for computer software. JOGL – Installation This chapter covers setting up of the environment to use JOGL on your system using different Integrated Development Environments (IDEs). Installing JOGL For JOGL Installation, you need to have following system requirements − System Requirements The first requirement is to have the Java Development Kit (JDK) installed on your machine. Requirement Description JDK Version 1.4 or above Memory no minimum requirement Disk Space no minimum requirement Operating System no minimum requirement You need to follow the given steps to setup your environment to start with JOGL application development − Step 1 – Verifying Java Installation on Your Machine Open console of your system and execute the following java command − Platform TASK COMMAND Windows Open Command Console C:>java-version Linux Open Command terminal $ java -version MAC Open Terminal Machine:~ joseph$ java -version Verify the output on the respective operating system. Platform Output Windows Java “1.6.0.21” java(TM) SE Runtime Environment(build 1..6.0_21-b07)Java HotSpot(TM) Client VM(build 17.0-b7, mixed mode, sharing) Linux Java “1.6.0.21” java(TM) SE Runtime Environment(build 1..6.0_21-b07)Java HotSpot(TM) Client VM(build 17.0-b7, mixed mode, sharing) MAC Java “1.6.0.21” java(TM) SE Runtime Environment(build 1..6.0_21-b07)Java HotSpot(TM) Client VM(build 17.0-b7, mixed mode, sharing) Step 2 – Setting up Java Development Kit (JDK) If Java is not installed on your machine, then you need to install Java SDK from the Oracle website: Oracle. You can find instructions for installing the JDK from the downloaded files. You need to follow the given instructions to install and configure the setup. Finally, set PATH and JAVA_HOME environment variables to refer to the directory that contains java.exe and javac.exe files, typically java_install_dir/bin and java_install_dir respectively. Set Java-home environment variable to point to the base directory location on the same path, where Java is installed on your machine. Platform Command Windows Set the environment variable JAVA_HOME to C:ProgramFilesJavaJdk1.6.0_21 Linux Export JAVA_HOME=/usr/local/java-current MAC Export JAVA_HOME=/Library/Java/Home Append Java compiler location to System Path as follows − Platform Command Windows Append the string ;%JAVA_HOME% bin at the end of the system variable and path Linux Export PATH=$PATH:$JAVA_HOME/bin/ MAC Not required Step 3 – Downloading JOGL You can download latest version of JOGL from the website
JOGL – 3D Cube
JOGL – 3D Cube ”; Previous Next In the previous chapters we have seen how to draw 3d triangle and rotate it. Now in this chapter you can learn how to a 3d cube, how to rotate it, how to attach an image on it. In the same way, This chapter provides examples to draw a 3D cube and apply colours to it and attach image to it. Below given is the program to draw a 3d cube and apply colours to it. import java.awt.DisplayMode; import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class Cube implements GLEventListener { public static DisplayMode dm, dm_old; private GLU glu = new GLU(); private float rquad = 0.0f; @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); gl.glLoadIdentity(); gl.glTranslatef( 0f, 0f, -5.0f ); // Rotate The Cube On X, Y & Z gl.glRotatef(rquad, 1.0f, 1.0f, 1.0f); //giving different colors to different sides gl.glBegin(GL2.GL_QUADS); // Start Drawing The Cube gl.glColor3f(1f,0f,0f); //red color gl.glVertex3f(1.0f, 1.0f, -1.0f); // Top Right Of The Quad (Top) gl.glVertex3f( -1.0f, 1.0f, -1.0f); // Top Left Of The Quad (Top) gl.glVertex3f( -1.0f, 1.0f, 1.0f ); // Bottom Left Of The Quad (Top) gl.glVertex3f( 1.0f, 1.0f, 1.0f ); // Bottom Right Of The Quad (Top) gl.glColor3f( 0f,1f,0f ); //green color gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Top Right Of The Quad gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Top Left Of The Quad gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Bottom Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Bottom Right Of The Quad gl.glColor3f( 0f,0f,1f ); //blue color gl.glVertex3f( 1.0f, 1.0f, 1.0f ); // Top Right Of The Quad (Front) gl.glVertex3f( -1.0f, 1.0f, 1.0f ); // Top Left Of The Quad (Front) gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Bottom Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Bottom Right Of The Quad gl.glColor3f( 1f,1f,0f ); //yellow (red + green) gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Bottom Left Of The Quad gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Bottom Right Of The Quad gl.glVertex3f( -1.0f, 1.0f, -1.0f ); // Top Right Of The Quad (Back) gl.glVertex3f( 1.0f, 1.0f, -1.0f ); // Top Left Of The Quad (Back) gl.glColor3f( 1f,0f,1f ); //purple (red + green) gl.glVertex3f( -1.0f, 1.0f, 1.0f ); // Top Right Of The Quad (Left) gl.glVertex3f( -1.0f, 1.0f, -1.0f ); // Top Left Of The Quad (Left) gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Bottom Left Of The Quad gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Bottom Right Of The Quad gl.glColor3f( 0f,1f, 1f ); //sky blue (blue +green) gl.glVertex3f( 1.0f, 1.0f, -1.0f ); // Top Right Of The Quad (Right) gl.glVertex3f( 1.0f, 1.0f, 1.0f ); // Top Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Bottom Left Of The Quad gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Bottom Right Of The Quad gl.glEnd(); // Done Drawing The Quad gl.glFlush(); rquad -= 0.15f; } @Override public void dispose( GLAutoDrawable drawable ) { // TODO Auto-generated method stub } @Override public void init( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel( GL2.GL_SMOOTH ); gl.glClearColor( 0f, 0f, 0f, 0f ); gl.glClearDepth( 1.0f ); gl.glEnable( GL2.GL_DEPTH_TEST ); gl.glDepthFunc( GL2.GL_LEQUAL ); gl.glHint( GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST ); } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); if( height lt;= 0 ) height = 1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Cube cube = new Cube(); glcanvas.addGLEventListener( cube ); glcanvas.setSize( 400, 400 ); final JFrame frame = new JFrame ( ” Multicolored cube” ); frame.getContentPane().add( glcanvas ); frame.setSize( frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); final FPSAnimator animator = new FPSAnimator(glcanvas, 300,true); animator.start(); } } When you compile and execute the above program, the following output is generated. It shows a colored 3D cube. Applying Texture to the Cube The following steps are given to apply texture to a cube − You can bind required texture to the cube using the gl.glBindTexture(GL2.GL_TEXTURE_2D.texture) method of the Drawable interface. This method requires texture (int) argument along with GL2.GL_TEXTURE_2D(int). Before you execute Display(), you need to create texture variable In the init() method or in the starting lines of glDisplay() method, enable the texture using gl.glEnable(GL2.GL_TEXTURE_2D) method. Create the texture object, which needs a file object as a parameter, which in turn needs the path of the image used as the texture to the object. File file = new File(“c:\pictures\boy.jpg”); Texture t = textureIO.newTexture(file, true); texture = t.getTextureObject(gl); Handle the ‘file not found’ exception Below given is the program to attach image on a cube. import java.awt.DisplayMode; import java.io.File; import java.io.IOException; import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; import com.jogamp.opengl.util.texture.Texture; import com.jogamp.opengl.util.texture.TextureIO; public class CubeTexture implements GLEventListener { public static DisplayMode dm, dm_old; private GLU glu = new GLU(); private float xrot,yrot,zrot; private int texture; @Override public void display(GLAutoDrawable drawable) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT); gl.glLoadIdentity(); // Reset The View gl.glTranslatef(0f, 0f, -5.0f); gl.glRotatef(xrot, 1.0f, 1.0f, 1.0f); gl.glRotatef(yrot, 0.0f, 1.0f, 0.0f); gl.glRotatef(zrot, 0.0f, 0.0f, 1.0f); gl.glBindTexture(GL2.GL_TEXTURE_2D, texture); gl.glBegin(GL2.GL_QUADS); // Front Face gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, 1.0f); gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, 1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, 1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, 1.0f); // Back Face gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f(-1.0f, -1.0f, -1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f( 1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f( 1.0f, -1.0f, -1.0f); // Top Face gl.glTexCoord2f(0.0f, 1.0f); gl.glVertex3f(-1.0f, 1.0f, -1.0f); gl.glTexCoord2f(0.0f, 0.0f); gl.glVertex3f(-1.0f, 1.0f, 1.0f); gl.glTexCoord2f(1.0f, 0.0f); gl.glVertex3f( 1.0f, 1.0f, 1.0f); gl.glTexCoord2f(1.0f, 1.0f); gl.glVertex3f(
JOGL – Lighting
JOGL – Lighting ”; Previous Next This chapter explains you how to apply lighting effect to an object using JOGL. To set lighting, initially enable lighting using the glEnable() method. Then apply lighting for the objects, using the glLightfv(int light, int pname, float[] params, int params_offset) method of GLLightingFunc interface. This method takes four parameters. The following table describes the parameters of gllightfv() method. Sr.No. Parameter Name and Description 1 Light Specifies a light. The number of lights depends on the implementation, but at least eight lights are supported. It accepts ten values, those parameters are discussed in a separate table named Light Source Parameters given below. 2 Pname Specifies a single valued light source parameter. For light source, there are ten parameters as discussed below. 3 Params Specifies a pointer to the value or values that is set to the parameter pname of light source light. 4 Light source parameter You can use any of the light source parameters given below. Light source parameters The following table shows the Light source parameters − Sr.No. Parameter and Description 1 GL_AMBIENT It contains the parameters that specify the ambient intensity of the light. 2 GL_DIFFUSE It contains the parameters that specify the diffuse intensity of the light. 3 GL_SPECULAR It contains the parameters that specify the specular intensity of the light. 4 GL_POSITION It contains four integer or floating-point values that specify the position of the light in homogeneous object coordinates. 5 GL_SPOT_DIRECTION It contains parameters that specify the direction of light in homogeneous object coordinates. 6 GL_SPOT_EXPONENT Its parameters specify the intensity distribution of light. 7 GL_SPOT_CUTOFF The single parameter of this specifies the maximum spread angle of the light. 8 GL_CONSTANT_ATTENUATION or GL_LINEAR_ATTENUATION or GL_QUADRATIC_ATTENUATION You can use any of these attenuation factors, which is represented by a single value. Lighting is enabled or disabled using glEnable() and glDisable () methods with the argument GL_LIGHTING. The following template is given for lighting − gl.glEnable(GL2.GL_LIGHTING); gl.glEnable(GL2.GL_LIGHT0); gl.glEnable(GL2.GL_NORMALIZE); float[] ambientLight = { 0.1f, 0.f, 0.f,0f }; // weak RED ambient gl.glLightfv(GL2.GL_LIGHT0, GL2.GL_AMBIENT, ambientLight, 0); float[] diffuseLight = { 1f,2f,1f,0f }; // multicolor diffuse gl.glLightfv(GL2.GL_LIGHT0, GL2.GL_DIFFUSE, diffuseLight, 0); Applying Light to a Rotating Polygon Follow the given steps for applying light to a rotating polygon. Rotate the polygon using glRotate() method gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT); // Clear The Screen And The Depth Buffer gl.glLoadIdentity(); // Reset The View gl.glRotatef(rpoly, 0.0f, 1.0f, 0.0f); Let us go through the program to apply light to a rotating polygon − import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class PolygonLighting implements GLEventListener { private float rpoly; @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glColor3f(1f,0f,0f); //applying red // Clear The Screen And The Depth Buffer gl.glClear( GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); gl.glLoadIdentity(); // Reset The View gl.glRotatef( rpoly, 0.0f, 1.0f, 0.0f ); gl.glBegin( GL2.GL_POLYGON ); gl.glVertex3f( 0f,0.5f,0f ); gl.glVertex3f( -0.5f,0.2f,0f ); gl.glVertex3f( -0.5f,-0.2f,0f ); gl.glVertex3f( 0f,-0.5f,0f ); gl.glVertex3f( 0f,0.5f,0f ); gl.glVertex3f( 0.5f,0.2f,0f ); gl.glVertex3f( 0.5f,-0.2f,0f ); gl.glVertex3f( 0f,-0.5f,0f ); gl.glEnd(); gl.glFlush(); rpoly += 0.2f; //assigning the angle gl.glEnable( GL2.GL_LIGHTING ); gl.glEnable( GL2.GL_LIGHT0 ); gl.glEnable( GL2.GL_NORMALIZE ); // weak RED ambient float[] ambientLight = { 0.1f, 0.f, 0.f,0f }; gl.glLightfv(GL2.GL_LIGHT0, GL2.GL_AMBIENT, ambient-Light, 0); // multicolor diffuse float[] diffuseLight = { 1f,2f,1f,0f }; gl.glLightfv( GL2.GL_LIGHT0, GL2.GL_DIFFUSE, diffuse-Light, 0 ); } @Override public void dispose( GLAutoDrawable arg0 ) { //method body } @Override public void init( GLAutoDrawable arg0 ) { // method body } @Override public void reshape( GLAutoDrawable arg0, int arg1, int arg2, int arg3, int arg4 ) { // method body } public static void main( String[] args ) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); PolygonLighting polygonlighting = new PolygonLighting(); glcanvas.addGLEventListener( polygonlighting ); glcanvas.setSize( 400, 400 ); //creating frame final JFrame frame = new JFrame (” Polygon lighting “); //adding canvas to it frame.getContentPane().add( glcanvas ); frame.setSize( frame.getContentPane().getPreferredSize()); frame.setVisible( true ); //Instantiating and Initiating Animator final FPSAnimator animator = new FPSAnimator(glcanvas, 300,true ); animator.start(); } //end of main } //end of class If you compile and execute the above program, it generates the following output. Here, you can observe various snapshots of a rotating polygon with lighting. Print Page Previous Next Advertisements ”;
JOGL – Drawing Basics
JOGL – Drawing Basics ”; Previous Next OpenGL API has provided primitive methods for drawing basic graphical elements such as point, vertex, line etc. Using these methods, you can develop shapes such as triangle, polygon and circle. In both, 2D and 3D dimensions. This chapter teaches you how to draw a basic line using JOGL in a Java program. Drawing Objects To access programs which are specific to a hardware and operating system platforms and where the libraries are written in other languages such as C and C++ (native applications), Java uses a programming framework called Java Native Interface (JNI). JOGL uses this interface internally to access OpenGL functions as shown in the following diagram. All the four methods of GLEventListener interface have the code (java JOGL methods) to call OpenGL functions internally. Naming of those JOGL methods is also similar to the naming conventions of OpenGL. If the function name in OpenGL is glBegin(), it is used as gl.glBegin(). Whenever the gl.glBegin() method of java JOGL is called, it internally invokes the glBegin() method of OpenGL. This is the reason for installing native library files on the user system at the time of installing JOGL. The Display() Method This is an important method which holds the code for developing graphics. It requires the GLAutoDrawable interface object as its parameter. The display() method initially gets OpenGL context using the object of GL interface (GL inherits GLBase interface which contains methods to generate all OpenGL context objects). Since this tutorial is about JOGL2, let us generate a GL2 object. The following code snippet shows how to generate a GL2 Object − //Generating GL object GL gl = drawable.getGL(); GL gl = drawable.getGL(); //Using this Getting the Gl2 Object //this can be written in a single line like final GL2 gl = drawable.getGL().getGL2(); Using the object of GL2 interface, one can access the members of this interface, which in turn provide access to OpenGL [1.0… 3.0] functions. Drawing a Line GL2 interface contains a huge list of methods but here three main important methods are discussed namely glBegin(), glVertex(), and glEnd(). Sr.No. Methods and Description 1 glBegin() This method starts the process of drawing a line. It takes predefined string integer “GL_LINES” as a parameter, which is inherited from GL interface. 2 glVertex3f()/glVertex2f() This method creates the vertex and we have to pass coordinates as parameters 3f and 2f, which denote 3-dimensional floating point coordinates and 2-dimensional floating point coordinates respectively. 3 glEnd() ends the line Below given is the program to draws a basic line using JOGL − import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.swing.JFrame; public class Line implements GLEventListener { @Override public void display(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glBegin (GL2.GL_LINES);//static field gl.glVertex3f(0.50f,-0.50f,0); gl.glVertex3f(-0.50f,0.50f,0); gl.glEnd(); } @Override public void dispose(GLAutoDrawable arg0) { //method body } @Override public void init(GLAutoDrawable arg0) { // method body } public static void main(String[] args) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas(capabilities); Line l = new Line(); glcanvas.addGLEventListener(l); glcanvas.setSize(400, 400); //creating frame final JFrame frame = new JFrame (“straight Line”); //adding canvas to frame frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); }//end of main }//end of classimport javax.media.opengl.GL2; Print Page Previous Next Advertisements ”;
JOGL – 3D Triangle
JOGL – 3D Triangle ”; Previous Next In previous chapter we have seen how to draw 3d shapes, this chapter teaches you how to draw 3d triangle and rotate it. Below given is the program to draw a 3d triangle an rotate it. import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class Triangle3d implements GLEventListener { private GLU glu = new GLU(); private float rtri = 0.0f; @Override public void display(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); // Clear The Screen And The Depth Buffer gl.glClear( GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); gl.glLoadIdentity(); // Reset The View gl.glTranslatef( -0.5f, 0.0f, -6.0f ); // Move the triangle gl.glRotatef( rtri, 0.0f, 1.0f, 0.0f ); gl.glBegin( GL2.GL_TRIANGLES ); //drawing triangle in all dimensions // Front gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Front) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Left Of Triangle (Front) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Right Of Triangle (Front) // Right gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Right) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Left Of Triangle (Right) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Right Of Triangle (Right) // Left gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Back) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Left Of Triangle (Back) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Right Of Triangle (Back) //left gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top Of Triangle (Left) gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Left Of Triangle (Left) gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Right Of Triangle (Left) gl.glEnd(); // Done Drawing 3d triangle (Pyramid) gl.glFlush(); rtri += 0.2f; } @Override public void dispose( GLAutoDrawable drawable ) { //method body } @Override public void init( GLAutoDrawable drawable ) { //method body } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); if(height lt;=;) height = 1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { // TODO Auto-generated method stub final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Triangle3d triangle = new Triangle3d(); glcanvas.addGLEventListener( triangle ); glcanvas.setSize( 400, 400 ); final JFrame frame = new JFrame ( “3d Triangle (shallow)” ); frame.getContentPane().add( glcanvas ); frame.setSize( frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); final FPSAnimator animator = new FPSAnimator(glcanvas,300,true); animator.start(); } } When you compile and execute the above program, the following output is generated. Here, you have the snapshots of rotating 3D triangle. Since this program does not includes depth test, the triangle is generated hollow. To make the triangle solid, you need to enable depth test by using glEnable(GL_DEPTH_TEST). Enabling the depth buffer gives you a blank screen. This can be cleared by clearing the color using glClear(GL_COLOR_BUFFERBIT | GL_DEPTH_BUFFER_BIT) method. To enable depth test in the init() method or in the glDisplay() method, write the following code − public void init(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel(GL2.GL_SMOOTH); gl.glClearColor(0f, 0f, 0f, 0f); gl.glClearDepth(1.0f); gl.glEnable(GL2.GL_DEPTH_TEST); gl.glDepthFunc(GL2.GL_LEQUAL); gl.glHint(GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST); } Below given is the Program to draw a 3D triangle with depth test. import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class Triangledepthtest implements GLEventListener { private GLU glu = new GLU(); private float rtri = 0.0f; @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel( GL2.GL_SMOOTH ); gl.glClearColor( 0f, 0f, 0f, 0f ); gl.glClearDepth( 1.0f ); gl.glEnable( GL2.GL_DEPTH_TEST ); gl.glDepthFunc( GL2.GL_LEQUAL ); gl.glHint(GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST); // Clear The Screen And The Depth Buffer gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT); gl.glLoadIdentity(); // Reset The View gl.glTranslatef( -0.5f,0.0f,-6.0f ); // Move the triangle gl.glRotatef( rtri, 0.0f, 1.0f, 0.0f ); gl.glBegin( GL2.GL_TRIANGLES ); //drawing triangle in all dimensions //front gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 1.0f, 0.0f ); // Green gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Left gl.glColor3f( 0.0f, 0.0f, 1.0f ); // Blue gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Right) //right gl.glColor3f( 1.0f, 0.0f, 0.0f ); gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 0.0f, 1.0f ); gl.glVertex3f( 1.0f, -1.0f, 1.0f ); // Left gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Right //left gl.glColor3f( 1.0f, 0.0f, 0.0f ); gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( 1.0f, -1.0f, -1.0f ); // Left gl.glColor3f( 0.0f, 0.0f, 1.0f ); gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Right //top gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( 1.0f, 2.0f, 0.0f ); // Top gl.glColor3f( 0.0f, 0.0f, 1.0f ); gl.glVertex3f( -1.0f, -1.0f, -1.0f ); // Left gl.glColor3f( 0.0f, 1.0f, 0.0f ); gl.glVertex3f( -1.0f, -1.0f, 1.0f ); // Right gl.glEnd(); // Done Drawing 3d triangle (Pyramid) gl.glFlush(); rtri += 0.2f; } @Override public void dispose( GLAutoDrawable drawable ) { } @Override public void init( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glShadeModel( GL2.GL_SMOOTH ); gl.glClearColor( 0f, 0f, 0f, 0f ); gl.glClearDepth( 1.0f ); gl.glEnable( GL2.GL_DEPTH_TEST ); gl.glDepthFunc( GL2.GL_LEQUAL ); gl.glHint(GL2.GL_PERSPECTIVE_CORRECTION_HINT, GL2.GL_NICEST ); } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height ) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); if( height <= 0 ) height = 1; final float h = ( float
JOGL – 3D Basics
JOGL – 3D Basics ”; Previous Next In previous chapters we have seen how to create 2d objects, apply effects to it, and transform the object. This chapter teaches you how to draw a line with 3rd dimension, and some shapes. Let us draw a simple line with z-axis and see the difference between 2D and 3D lines. Draw a simple line first, then draw the second line 3 units into the window. Let us go through the program to draw a 3D line − import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; public class Line3d implements GLEventListener { private GLU glu = new GLU(); @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glTranslatef( 0f, 0f, -2.5f ); gl.glBegin( GL2.GL_LINES ); gl.glVertex3f( -0.75f,0f,0 ); gl.glVertex3f( 0f,-0.75f, 0 ); gl.glEnd(); //3d line gl.glBegin( GL2.GL_LINES ); gl.glVertex3f( -0.75f,0f,3f );// 3 units into the window gl.glVertex3f( 0f,-0.75f,3f ); gl.glEnd(); } @Override public void dispose( GLAutoDrawable arg0 ) { //method body } @Override public void init( GLAutoDrawable arg0 ) { // method body } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { GL2 gl = drawable.getGL().getGL2(); if( height <= 0 ) height = 1; final float h = ( float ) width / ( float ) height; gl.glViewport( 0, 0, width, height ); gl.glMatrixMode( GL2.GL_PROJECTION ); gl.glLoadIdentity(); glu.gluPerspective( 45.0f, h, 1.0, 20.0 ); gl.glMatrixMode( GL2.GL_MODELVIEW ); gl.glLoadIdentity(); } public static void main( String[] args ) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Line3d line3d = new Line3d(); glcanvas.addGLEventListener( line3d ); glcanvas.setSize( 400, 400 ); //creating frame final JFrame frame = new JFrame (” 3d line”); //adding canvas to it frame.getContentPane().add( glcanvas ); frame.setSize(frame.getContentPane().getPreferredSize() ); frame.setVisible( true ); }//end of main }//end of class When you compile and execute the above program, the following output is generated − 3D shapes can be drawn by giving non-zero values to z quadrant of the glVertex3f() method, which generates the above view. Now joining the remaining lines will lead to a 3D edge. Now in the same way let us develop an edge with 3rd dimension. import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; public class Edge1 implements GLEventListener { private GLU glu = new GLU(); @Override public void display(GLAutoDrawable drawable) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); gl.glTranslatef(0f, 0f, -2.5f); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(0f,-0.75f, 0); gl.glEnd(); //3d line gl.glBegin(GL2.GL_LINES); //3 units in to the window gl.glVertex3f(-0.75f,0f,3f); gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); //top gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); //bottom gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); } @Override public void dispose(GLAutoDrawable arg0) { //method body } @Override public void init(GLAutoDrawable arg0) { // method body } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) { // TODO Auto-generated method stubfinal GL2 gl = drawable.getGL().getGL2(); if(height <= 0) height = 1; final float h = (float) width / (float) height; gl.glViewport(0, 0, width, height); gl.glMatrixMode(GL2.GL_PROJECTION); gl.glLoadIdentity(); glu.gluPerspective(45.0f, h, 1.0, 20.0); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glLoadIdentity(); } public static void main(String[] args) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas(capabilities); Edge1 b = new Edge1(); glcanvas.addGLEventListener(b); glcanvas.setSize(400, 400); //creating frame final JFrame frame = new JFrame (” 3d edge”); //adding canvas to it frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); }//end of main }//end of class When you compile and execute the above program, the following output is generated − In the same way, by developing 3D edges to corresponding sides of any 2D quadrilateral and joining the adjacent vertices, you can get a 3D quadrilateral. Below given is a program to draw a rhombus using JOGL. import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.media.opengl.glu.GLU; import javax.swing.JFrame; public class Rhombus implements GLEventListener { private GLU glu = new GLU(); @Override public void display(GLAutoDrawable drawable) { final GL2 gl = drawable.getGL().getGL2(); gl.glTranslatef(0f, 0f, -2.5f); //drawing edge1….. gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(0f,-0.75f, 0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,3f); // 3 units into the window gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); //top gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); // bottom gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0f,-0.75f,3f); gl.glEnd(); // edge 2…. gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0.75f,0f, 0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 3f); gl.glVertex3f(0.75f,0f, 3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0f,-0.75f, 0); gl.glVertex3f(0f,-0.75f, 3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f, 0); gl.glVertex3f(0.75f,0f, 3f); gl.glEnd(); //Edge 3…………. gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,0); gl.glVertex3f(-0.75f,0f,0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,3f); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,0); gl.glVertex3f( 0.0f,0.75f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(-0.75f,0f,0); gl.glVertex3f(-0.75f,0f,3f); gl.glEnd(); //final edge gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f, 0); gl.glVertex3f( 0.0f,0.75f,0); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f,3f); gl.glVertex3f( 0.0f,0.75f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f(0.75f,0f, 0); gl.glVertex3f(0.75f,0f,3f); gl.glEnd(); gl.glBegin(GL2.GL_LINES); gl.glVertex3f( 0.0f,0.75f,0); gl.glVertex3f( 0.0f,0.75f,3f); gl.glEnd(); } @Override public void dispose(GLAutoDrawable arg0) { //method body } @Override public void init(GLAutoDrawable arg0) { // method body } @Override public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) { // TODO Auto-generated method stub final GL2 gl = drawable.getGL().getGL2(); if(height lt;= 0) height = 1; final float h = (float) width / (float) height; gl.glViewport(3, 6, width, height); gl.glMatrixMode(GL2.GL_PROJECTION); gl.glLoadIdentity(); glu.gluPerspective(45.0f, h, 1.0, 20.0); gl.glMatrixMode(GL2.GL_MODELVIEW); gl.glLoadIdentity(); } public static void main(String[] args) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get(GLProfile.GL2); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas(capabilities); Rhombus b = new Rhombus(); glcanvas.addGLEventListener(b); glcanvas.setSize(400, 400); //creating frame final JFrame frame = new JFrame (” Rhombus 3d”); //adding canvas to it frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); }//end of main }//end of classimport javax.media.opengl.GL2; When you compile and execute the above program, the following output is generated. It shows a rhombus drawn using 3D lines. The predefined parameters of glBegin() method can be used for drawing 3D shapes. Print Page Previous Next Advertisements ”;
JOGL – Scaling
JOGL – Scaling ”; Previous Next This chapter teaches you how to scale an object ie., increase or decrease the size of an object using JOGL. Scaling an object is done by using the glScalef(float x, float y, float z) method of GLMatrixFunc interface. This method accepts three floating point parameters, using which we specify the scale factors along the x, y, and z axes respectively. For example, in the following program, a triangle is diminished to 50%. Here, the value 50 is passed as parameter along all the axes. Let us go through the program to scale a triangle − import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.swing.JFrame; public class Scaling implements GLEventListener { @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glScalef( 0.50f,0.25f,0.50f ); gl.glBegin( GL2.GL_TRIANGLES ); // Drawing Using Triangles gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 0.5f,0.7f,0.0f ); // Top gl.glColor3f( 0.0f,1.0f,0.0f ); // blue gl.glVertex3f( -0.2f,-0.50f,0.0f ); // Bottom Left gl.glColor3f( 0.0f,0.0f,1.0f ); // green gl.glVertex3f( 0.5f,-0.5f,0.0f ); // Bottom Right gl.glEnd(); } @Override public void dispose( GLAutoDrawable arg0 ) { //method body } @Override public void init( GLAutoDrawable arg0 ) { // method body } @Override public void reshape( GLAutoDrawable arg0, int arg1, int arg2, int arg3, int arg4 ) { // method body } public static void main( String[] args ) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get( GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities(profile); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities ); Scaling scaling = new Scaling(); glcanvas.addGLEventListener( scaling ); glcanvas.setSize( 400, 400 ); //creating frame final JFrame frame = new JFrame (” Dimnished Triangle (Scaling )”); //adding canvas to it frame.getContentPane().add(glcanvas); frame.setSize(frame.getContentPane().getPreferredSize()); frame.setVisible(true); } //end of main } //end of classimport javax.media.opengl.GL2; On compiling and executing the above program, we get the following output. Here, you can observe a diminished triangle as compared to the original triangle produced by TriangleColor.java − Print Page Previous Next Advertisements ”;
JOGL – Rotation
JOGL – Rotation ”; Previous Next In this chapter we explained you how to rotate an object using JOGL. Rotation of objects can be done along any of the three axes, using the glRotatef(float angle, float x, float y, float z) method of GLMatrixFunc interface. You need to pass an angle of rotation and x, y, z axes as parameters to this method. The following steps guide you to rotate an object successfully − Clear the color buffer and depth buffer initially using gl.glClear(GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT) method. This method erases the previous state of the object and makes the view clear. Reset the projection matrix using the glLoadIdentity() method. Instantiate the animator class and start the animator using the start() method. FPSAnimator Class Below given ar the various constructors of FPSAnimator class. Sr.No. Methods and Descriptions 1 FPSAnimator(GLAutoDrawable drawable, int fps) It creates an FPSAnimator with a given target frames-per-second value and an initial drawable to animate. 2 FPSAnimator(GLAutoDrawable drawable, int fps, boolean cheduleAtFixedRate) It creates an FPSAnimator with a given target frames-per-second value, an initial drawable to animate, and a flag indicating whether to use fixed-rate scheduling. 3 FPSAnimator(int fps) It creates an FPSAnimator with a given target frames-per-second value. 4 It creates an FPSAnimator with a given target frames-per-second value and a flag indicating whether to use fixed rate scheduling. It creates an FPSAnimator with a given target frames-per-second value and a flag indicating whether to use fixed rate scheduling. start() and stop() are the two important methods in this class. The following program shows how to rotate a triangle using FPSAnimator class − import javax.media.opengl.GL2; import javax.media.opengl.GLAutoDrawable; import javax.media.opengl.GLCapabilities; import javax.media.opengl.GLEventListener; import javax.media.opengl.GLProfile; import javax.media.opengl.awt.GLCanvas; import javax.swing.JFrame; import com.jogamp.opengl.util.FPSAnimator; public class TriangleRotation implements GLEventListener { private float rtri; //for angle of rotation @Override public void display( GLAutoDrawable drawable ) { final GL2 gl = drawable.getGL().getGL2(); gl.glClear (GL2.GL_COLOR_BUFFER_BIT | GL2.GL_DEPTH_BUFFER_BIT ); // Clear The Screen And The Depth Buffer gl.glLoadIdentity(); // Reset The View //triangle rotation gl.glRotatef( rtri, 0.0f, 1.0f, 0.0f ); // Drawing Using Triangles gl.glBegin( GL2.GL_TRIANGLES ); gl.glColor3f( 1.0f, 0.0f, 0.0f ); // Red gl.glVertex3f( 0.5f,0.7f,0.0f ); // Top gl.glColor3f( 0.0f,1.0f,0.0f ); // blue gl.glVertex3f( -0.2f,-0.50f,0.0f ); // Bottom Left gl.glColor3f( 0.0f,0.0f,1.0f ); // green gl.glVertex3f( 0.5f,-0.5f,0.0f ); // Bottom Right gl.glEnd(); gl.glFlush(); rtri += 0.2f; //assigning the angle } @Override public void dispose( GLAutoDrawable arg0 ) { //method body } @Override public void init( GLAutoDrawable arg0 ) { // method body } @Override public void reshape( GLAutoDrawable drawable, int x, int y, int width, int height ) { public static void main( String[] args ) { //getting the capabilities object of GL2 profile final GLProfile profile = GLProfile.get(GLProfile.GL2 ); GLCapabilities capabilities = new GLCapabilities( profile ); // The canvas final GLCanvas glcanvas = new GLCanvas( capabilities); TriangleRotation triangle = new TriangleRotation(); glcanvas.addGLEventListener( triangle ); glcanvas.setSize( 400, 400 ); // creating frame final JFrame frame = new JFrame (“Rotating Triangle”); // adding canvas to it frame.getContentPane().add( glcanvas ); frame.setSize(frame.getContentPane() .getPreferredSize()); frame.setVisible( true ); //Instantiating and Initiating Animator final FPSAnimator animator = new FPSAnimator(glcanvas, 300,true); animator.start(); } } //end of main } //end of class If you compile and execute the above program, it generates the following output. Here, you can observe various snapshots of a rotating the colored triangle around the x-axis. Print Page Previous Next Advertisements ”;
JOGL – Discussion
Discuss JOGL ”; Previous Next Java binding for OpenGL (JOGL) is an open source library for binding OpenGL graphics in Java. This tutorial provides a basic understanding of JOGL library and its features. It also explains how to develop 2D and 3D graphics applications using JOGL. Please enable JavaScript to view the comments powered by Disqus. Print Page Previous Next Advertisements ”;