There are four types of convex programming problems −
Step 1 − $min :fleft ( x right )$, where $x in S$ and S be a non-empty convex set in $mathbb{R}^n$ and $fleft ( x right )$ is convex function.
Step 2 − $min : fleft ( x right ), x in mathbb{R}^n$ subject to
$g_ileft ( x right ) geq 0, 1 leq m_1$ and $g_ileft ( x right )$ is a convex function.
$g_ileft ( x right ) leq 0,m_1+1 leq m_2$ and $g_ileft ( x right )$ is a concave function.
$g_ileft ( x right ) = 0, m_2+1 leq m$ and $g_ileft ( x right )$ is a linear function.
where $fleft ( x right )$ is a convex fucntion.
Step 3 − $max :fleft ( x right )$ where $x in S$ and S be a non-empty convex set in $mathbb{R}^n$ and $fleft ( x right )$ is concave function.
Step 4 − $min :fleft ( x right )$, where $x in mathbb{R}^n$ subject to
$g_ileft ( x right ) geq 0, 1 leq m_1$ and $g_ileft ( x right )$ is a convex function.
$g_ileft ( x right ) leq 0, m_1+1 leq m_2$ and $g_ileft ( x right )$ is a concave function.
$g_ileft ( x right ) = 0,m_2+1 leq m$ and $g_ileft ( x right )$ is a linear function.
where $fleft ( x right )$ is a concave function.
Cone of feasible direction
Let S be a non-empty set in $mathbb{R}^n$ and let $hat{x} in :Closureleft ( S right )$, then the cone of feasible direction of S at $hat{x}$, denoted by D, is defined as $D=left { d:dneq 0,hat{x}+lambda d in S, lambda in left ( 0, delta right ), delta > 0 right }$
Each non-zero vector $d in D$ is called feasible direction.
For a given function $f:mathbb{R}^n Rightarrow mathbb{R}$ the cone of improving direction at $hat{x}$ is denoted by F and is given by
$$F=left { d:fleft ( hat{x}+lambda d right )leq fleft ( hat{x} right ),forall lambda in left ( 0,delta right ), delta >0 right }$$
Each direction $d in F$ is called an improving direction or descent direction of f at $hat{x}$
Theorem
Necessary Condition
Consider the problem $min fleft ( x right )$ such that $x in S$ where S be a non-empty set in $mathbb{R}^n$. Suppose f is differentiable at a point $hat{x} in S$. If $hat{x}$ is a local optimal solution, then $F_0 cap D= phi$ where $F_0=left { d:bigtriangledown fleft ( hat{x} right )^T d
Sufficient Condition
If $F_0 cap D= phi$ f is a pseudoconvex function at $hat{x}$ and there exists a neighbourhood of $hat{x},N_varepsilon left ( hat{x} right ), varepsilon > 0$ such that $d=x-hat{x}in D$ for any $x in S cap N_varepsilon left ( hat{x} right )$, then $hat{x}$ is local optimal solution.
Proof
Necessary Condition
Let $F_0 cap Dneq phi$, ie, there exists a $d in F_0 cap D$ such that $d in F_0$ and $din D$
Since $d in D$, therefore there exists $delta_1 >0$ such that $hat{x}+lambda d in S, lambda in left ( 0,delta_1 right ).$
Since $d in F_0$, therefore $bigtriangledown f left ( hat{x}right )^T d
Thus, there exists $delta_2>0$ such that $fleft ( hat{x}+lambda dright )
Let $delta=min left {delta_1,delta_2 right }$
Then $hat{x}+lambda d in S, fleft (hat{x}+lambda d right )
But $hat{x}$ is local optimal solution.
Hence it is contradiction.
Thus $F_0cap D=phi$
Sufficient Condition
Let $F_0 cap Dneq phi$ nd let f be a pseudoconvex function.
Let there exists a neighbourhood of $hat{x}, N_{varepsilon}left ( hat{x} right )$ such that $d=x-hat{x}, forall x in S cap N_varepsilonleft ( hat{x} right )$
Let $hat{x}$ is not a local optimal solution.
Thus, there exists $bar{x} in S cap N_varepsilon left ( hat{x} right )$ such that $f left ( bar{x} right )
By assumption on $S cap N_varepsilon left ( hat{x} right ),d=left ( bar{x}-hat{x} right )in D$
By pseudoconvex of f,
$$fleft ( hat{x} right )>fleft ( bar{x} right )Rightarrow bigtriangledown fleft ( hat{x} right )^Tleft ( bar{x}-hat{x} right )
$Rightarrow bigtriangledown fleft ( hat{x} right) ^T d
$Rightarrow d in F_0$
hence $F_0cap D neq phi$
which is a contradiction.
Hence, $hat{x}$ is local optimal solution.
Consider the following problem:$min :fleft ( xright )$ where $x in X$ such that $g_xleft ( xright ) leq 0, i=1,2,…,m$
$f:X rightarrow mathbb{R},g_i:X rightarrow mathbb{R}^n$ and X is an open set in $mathbb{R}^n$
Let $S=left {x:g_ileft ( xright )leq 0,forall i right }$
Let $hat{x} in X$, then $M=left {1,2,…,m right }$
Let $I=left {i:g_ileft ( hat{x}right )=0, i in Mright }$ where I is called index set for all active constraints at $hat{x}$
Let $J=left {i:g_ileft ( hat{x}right )
Let $F_0=left { d in mathbb{R}^m:bigtriangledown fleft ( hat{x} right )^T d
Let $G_0=left { d in mathbb{R}^m:bigtriangledown gIleft ( hat{x} right )^T d
or $G_0=left { d in mathbb{R}^m:bigtriangledown gileft ( hat{x} right )^T d
Lemma
If $S=left { x in X:g_ileft ( xright ) leq 0, forall i in Iright }$ and X is non-empty open set in $mathbb{R}^n$. Let $hat{x}in S$ and $g_i$ are different at $hat{x}, i in I$ and let $g_i$ where $i in J$ are continuous at $hat{x}$, then $G_0 subseteq D$.
Proof
Let $d in G_0$
Since $hat{x} in X$ and X is an open set, thus there exists $delta_1 >0$ such that $hat{x}+lambda d in X$ for $lambda in left ( 0, delta_1right )$
Also since $g_hat{x}0$, $g_ileft ( hat{x}+lambda dright )
Since $d in G_0$, therefore, $bigtriangledown g_ileft ( hat{x}right )^T d 0, g_ileft ( hat{x}+lambda dright )
Let $delta=minleft { delta_1, delta_2, delta_3 right }$
therefore, $hat{x}+lambda d in X, g_ileft ( hat{x}+lambda dright )
$Rightarrow hat{x}+lambda d in S$
$Rightarrow d in D$
$Rightarrow G_0 subseteq D$
Hence Proved.
Theorem
Necessary Condition
Let $f$ and $g_i, i in I$, are different at $hat{x} in S,$ and $g_j$ are continous at $hat{x} in S$. If $hat{x}$ is local minima of $S$, then $F_0 cap G_0=phi$.
Sufficient Condition
If $F_0 cap G_0= phi$ and f is a pseudoconvex function at $left (hat{x}, g_i 9x right ), i in I$ are strictly pseudoconvex functions over some $varepsilon$ – neighbourhood of $hat{x}, hat{x}$ is a local optimal solution.
Remarks
-
Let $hat{x}$ be a feasible point such that $bigtriangledown fleft(hat{x} right)=0$, then $F_0 = phi$. Thus, $F_0 cap G_0= phi$ but $hat{x}$ is not an optimal solution
-
But if $bigtriangledown gleft(hat{x} right)=0$, then $G_0=phi$, thus $F_0 cap G_0= phi$
-
Consider the problem : min $fleft(x right)$ such that $gleft(x right)=0$.
Since $gleft(x right)=0$, thus $g_1left(x right)=gleft(x right)
Let $hat{x} in S$, then $g_1left(hat{x} right)=0$ and $g_2left(hat{x} right)=0$.
But $bigtriangledown g_1left(hat{x} right)= – bigtriangledown g_2left(hat{x}right)$
Thus, $G_0= phi$ and $F_0 cap G_0= phi$.
Learning working make money