DSA – Hash Table


Hash Table Data structure


”;


Hash Table is a data structure which stores data in an associative manner. In a hash table, data is stored in an array format, where each data value has its own unique index value. Access of data becomes very fast if we know the index of the desired data.

Thus, it becomes a data structure in which insertion and search operations are very fast irrespective of the size of the data. Hash Table uses an array as a storage medium and uses hash technique to generate an index where an element is to be inserted or is to be located from.

Hashing

Hashing is a technique to convert a range of key values into a range of indexes of an array. We”re going to use modulo operator to get a range of key values. Consider an example of hash table of size 20, and the following items are to be stored. Item are in the (key,value) format.

Hash Function

  • (1,20)
  • (2,70)
  • (42,80)
  • (4,25)
  • (12,44)
  • (14,32)
  • (17,11)
  • (13,78)
  • (37,98)
Sr.No. Key Hash Array Index
1 1 1 % 20 = 1 1
2 2 2 % 20 = 2 2
3 42 42 % 20 = 2 2
4 4 4 % 20 = 4 4
5 12 12 % 20 = 12 12
6 14 14 % 20 = 14 14
7 17 17 % 20 = 17 17
8 13 13 % 20 = 13 13
9 37 37 % 20 = 17 17

Linear Probing

As we can see, it may happen that the hashing technique is used to create an already used index of the array. In such a case, we can search the next empty location in the array by looking into the next cell until we find an empty cell. This technique is called linear probing.

Sr.No. Key Hash Array Index After Linear Probing, Array Index
1 1 1 % 20 = 1 1 1
2 2 2 % 20 = 2 2 2
3 42 42 % 20 = 2 2 3
4 4 4 % 20 = 4 4 4
5 12 12 % 20 = 12 12 12
6 14 14 % 20 = 14 14 14
7 17 17 % 20 = 17 17 17
8 13 13 % 20 = 13 13 13
9 37 37 % 20 = 17 17 18

Basic Operations

Following are the basic primary operations of a hash table.

  • Search − Searches an element in a hash table.

  • Insert − Inserts an element in a hash table.

  • Delete − Deletes an element from a hash table.

DataItem

Define a data item having some data and key, based on which the search is to be conducted in a hash table.

struct DataItem {
   int data;
   int key;
};

Hash Method

Define a hashing method to compute the hash code of the key of the data item.

int hashCode(int key){
   return key % SIZE;
}

Whenever an element is to be searched, compute the hash code of the key passed and locate the element using that hash code as index in the array. Use linear probing to get the element ahead if the element is not found at the computed hash code.

struct DataItem *search(int key) {
   //get the hash
   int hashIndex = hashCode(key);
	
   //move in array until an empty
   while(hashArray[hashIndex] != NULL) {
	
      if(hashArray[hashIndex]->key == key)
         return hashArray[hashIndex];
			
      //go to next cell
      ++hashIndex;
		
      //wrap around the table
      hashIndex %= SIZE;
   }

   return NULL;        
}

Example

Following are the implementations of this operation in various programming language −

#include <stdio.h>
#define SIZE 10 // Define the size of the hash table
struct DataItem {
    int key;
};
struct DataItem *hashArray[SIZE]; // Define the hash table as an array of DataItem pointers
int hashCode(int key) {
    // Return a hash value based on the key
    return key % SIZE;
}
struct DataItem *search(int key) {
    // get the hash
    int hashIndex = hashCode(key);

    // move in array until an empty slot is found or the key is found
    while (hashArray[hashIndex] != NULL) {
        // If the key is found, return the corresponding DataItem pointer
        if (hashArray[hashIndex]->key == key)
            return hashArray[hashIndex];

        // go to the next cell
        ++hashIndex;

        // wrap around the table
        hashIndex %= SIZE;
    }
    // If the key is not found, return NULL
    return NULL;
}

int main() {

    // Initializing the hash table with some sample DataItems
    struct DataItem item2 = {25}; // Assuming the key is 25
    struct DataItem item3 = {64}; // Assuming the key is 64
    struct DataItem item4 = {22}; // Assuming the key is 22

    // Calculate the hash index for each item and place them in the hash table

    int hashIndex2 = hashCode(item2.key);
    hashArray[hashIndex2] = &item2;
    
    int hashIndex3 = hashCode(item3.key);
    hashArray[hashIndex3] = &item3;

    int hashIndex4 = hashCode(item4.key);
    hashArray[hashIndex4] = &item4;

    // Call the search function to test it
    int keyToSearch = 64; // The key to search for in the hash table
    struct DataItem *result = search(keyToSearch);
    printf("The element to be searched: %d", keyToSearch);
    if (result != NULL) {
        printf("nElement found");
    } else {
        printf("nElement not found");
    }

    return 0;
}

Output

The element to be searched: 64
Element found
#include <iostream>
#include <unordered_map>
using namespace std;
#define SIZE 10 // Define the size of the hash table
struct DataItem {
   int key;
};
unordered_map<int, DataItem*> hashMap; // Define the hash table as an unordered_map

int hashCode(int key) {
   // Return a hash value based on the key
   return key % SIZE;
}

DataItem* search(int key) {
   // get the hash
   int hashIndex = hashCode(key);
   
   // move in the map until an empty slot is found or the key is found
   while (hashMap[hashIndex] != nullptr) {
      // If the key is found, return the corresponding DataItem pointer
      if (hashMap[hashIndex]->key == key)
         return hashMap[hashIndex];
      
      // go to the next cell
      ++hashIndex;
      
      // wrap around the table
      hashIndex %= SIZE;
   }
   
   // If the key is not found, return nullptr
   return nullptr;
}

int main() {
   
   // Initializing the hash table with some sample DataItems
   DataItem item2 = {25}; // Assuming the key is 25
   DataItem item3 = {64}; // Assuming the key is 64
   DataItem item4 = {22}; // Assuming the key is 22
   
   // Calculate the hash index for each item and place them in the hash table
   
   int hashIndex2 = hashCode(item2.key);
   hashMap[hashIndex2] = &item2;
   
   int hashIndex3 = hashCode(item3.key);
   hashMap[hashIndex3] = &item3;
   
   int hashIndex4 = hashCode(item4.key);
   hashMap[hashIndex4] = &item4;
   
   // Call the search function to test it
   int keyToSearch = 64; // The key to search for in the hash table
   DataItem* result = search(keyToSearch);
   cout<<"The element to be searched: "<<keyToSearch;
   if (result != nullptr) {
      cout << "nElement found";
   } else {
      cout << "nElement not found";
   }
   
   return 0;
}

Output

The element to be searched: 64
Element found

import java.util.HashMap;
public class Main {
   static final int SIZE = 10; // Define the size of the hash table
   static class DataItem {
      int key;
   }
   static HashMap<Integer, DataItem> hashMap = new HashMap<>(); // Define the hash table as a HashMap
   
   static int hashCode(int key) {
      // Return a hash value based on the key
      return key % SIZE;
   }
   static DataItem search(int key) {
      // get the hash
      int hashIndex = hashCode(key);
      
      // move in map until an empty slot is found or the key is found
      while (hashMap.get(hashIndex) != null) {
         // If the key is found, return the corresponding DataItem
         if (hashMap.get(hashIndex).key == key)
            return hashMap.get(hashIndex);
         
         // go to the next cell
         ++hashIndex;
         
         // wrap around the table
         hashIndex %= SIZE;
      }
      
      // If the key is not found, return null
      return null;
   }
public static void main(String[] args) {
   // Initializing the hash table with some sample DataItems
   
   DataItem item2 = new DataItem();
   item2.key = 25; // Assuming the key is 25
   
   DataItem item3 = new DataItem();
   item3.key = 64; // Assuming the key is 64
   DataItem item4 = new DataItem();
   item4.key = 22; // Assuming the key is 22
   // Calculate the hash index for each item and place them in the hash table
   
   int hashIndex2 = hashCode(item2.key);
   hashMap.put(hashIndex2, item2);
   
   int hashIndex3 = hashCode(item3.key);
   hashMap.put(hashIndex3, item3);
   
   int hashIndex4 = hashCode(item4.key);
   hashMap.put(hashIndex4, item4);
   
   // Call the search function to test it
   int keyToSearch = 64; // The key to search for in the hash table
   DataItem result = search(keyToSearch);
   System.out.print("The element to be searched: " + keyToSearch);
      if (result != null) {
         System.out.println("nElement found");
      } else {
         System.out.println("nElement not found");
      }
   }
}

Output

The element to be searched: 64
Element found

SIZE = 10 # Define the size of the hash table
class DataItem:
    def __init__(self, key):
        self.key = key
hashMap = {} # Define the hash table as a dictionary
def hashCode(key):
    # Return a hash value based on the key
    return key % SIZE

def search(key):
    # get the hash
    hashIndex = hashCode(key)

    # move in map until an empty slot is found or the key is found
    while hashIndex in hashMap:
        # If the key is found, return the corresponding DataItem
        if hashMap[hashIndex].key == key:
            return hashMap[hashIndex]

        # go to the next cell
        hashIndex = (hashIndex + 1) % SIZE

    # If the key is not found, return None
    return None
# Initializing the hash table with some sample DataItems
item2 = DataItem(25) # Assuming the key is 25
item3 = DataItem(64) # Assuming the key is 64
item4 = DataItem(22) # Assuming the key is 22
# Calculate the hash index for each item and place them in the hash table
hashIndex2 = hashCode(item2.key)
hashMap[hashIndex2] = item2

hashIndex3 = hashCode(item3.key)
hashMap[hashIndex3] = item3

hashIndex4 = hashCode(item4.key)
hashMap[hashIndex4] = item4

# Call the search function to test it
keyToSearch = 64 # The key to search for in the hash table
result = search(keyToSearch)
print("The element to be searched: ", keyToSearch)
if result:
    print("Element found")
else:
    print("Element not found")

Output

The element to be searched:  64
Element found

Insert Operation

Whenever an element is to be inserted, compute the hash code of the key passed and locate the index using that hash code as an index in the array. Use linear probing for empty location, if an element is found at the computed hash code.

void insert(int key,int data) {
   struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem));
   item->data = data;  
   item->key = key;     

   //get the hash 
   int hashIndex = hashCode(key);

   //move in array until an empty or deleted cell
   while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1) {
      //go to next cell
      ++hashIndex;
		
      //wrap around the table
      hashIndex %= SIZE;
   }
	
   hashArray[hashIndex] = item;        
}

Example

Following are the implementations of this operation in various programming languages −

#include <stdio.h>
#include <stdlib.h>
#define SIZE 4 // Define the size of the hash table
struct DataItem {
    int key;
};
struct DataItem *hashArray[SIZE]; // Define the hash table as an array of DataItem pointers
int hashCode(int key) {
    // Return a hash value based on the key
    return key % SIZE;
}
void insert(int key) {
   // Create a new DataItem using malloc
   struct DataItem *newItem = (struct DataItem*)malloc(sizeof(struct DataItem));
   
   if (newItem == NULL) {
      // Check if malloc fails to allocate memory
      fprintf(stderr, "Memory allocation errorn");
      return;
   }
   
   newItem->key = key;
   // Initialize other data members if needed
   
   // Calculate the hash index for the key
   int hashIndex = hashCode(key);
   
   // Handle collisions (linear probing)
   while (hashArray[hashIndex] != NULL) {
      // Move to the next cell
      ++hashIndex;
      // Wrap around the table if needed
      hashIndex %= SIZE;
   }
   
   // Insert the new DataItem at the calculated index
   hashArray[hashIndex] = newItem;
}
int main() {
   // Call the insert function with different keys to populate the hash table
   insert(42); // Insert an item with key 42
   insert(25); // Insert an item with key 25
   insert(64); // Insert an item with key 64
   insert(22); // Insert an item with key 22
   
   // Output the populated hash table
   for (int i = 0; i < SIZE; i++) {
      if (hashArray[i] != NULL) {
         printf("Index %d: Key %dn", i, hashArray[i]->key);
      } else {
         printf("Index %d: Emptyn", i);
      }
   }
   
   return 0;
}

Output

Index 0: Key 64
Index 1: Key 25
Index 2: Key 42
Index 3: Key 22
#include <iostream>
#include <vector>
#define SIZE 4 // Define the size of the hash table

struct DataItem {
   int key;
};
std::vector<DataItem*> hashArray(SIZE, nullptr); // Define the hash table as a vector of DataItem pointers
int hashCode(int key)
{
   // Return a hash value based on the key
   return key % SIZE;
}
void insert(int key)
{
   // Create a new DataItem using new (dynamic memory allocation)
   DataItem *newItem = new DataItem;
   
   newItem->key = key;
   // Initialize other data members if needed
   
   // Calculate the hash index for the key
   int hashIndex = hashCode(key);
   
   // Handle collisions (linear probing)
   while (hashArray[hashIndex] != nullptr) {
      // Move to the next cell
      ++hashIndex;
      // Wrap around the table if needed
      hashIndex %= SIZE;
   }
   
   // Insert the new DataItem at the calculated index
   hashArray[hashIndex] = newItem;
}

int main()
{
   // Call the insert function with different keys to populate the hash table
   
   insert(42); // Insert an item with key 42
   insert(25); // Insert an item with key 25
   insert(64); // Insert an item with key 64
   insert(22); // Insert an item with key 22
   
   // Output the populated hash table
   for (int i = 0; i < SIZE; i++) {
      if (hashArray[i] != nullptr) {
         std::cout << "Index " << i << ": Key " << hashArray[i]->key << std::endl;
      } else {
         std::cout << "Index " << i << ": Empty" << std::endl;
      }
   }
   return 0;
}

Output

Index 0: Key 64
Index 1: Key 25
Index 2: Key 42
Index 3: Key 22

import java.util.Arrays;
public class Main {
   static final int SIZE = 4; // Define the size of the hash table
   static class DataItem {
      int key;
   }
   static DataItem[] hashArray = new DataItem[SIZE]; // Define the hash table as an array of DataItem pointers
   static int hashCode(int key) {
      // Return a hash value based on the key
      return key % SIZE;
   }
   static void insert(int key) {
      // Create a new DataItem
      DataItem newItem = new DataItem();
      newItem.key = key;
      // Initialize other data members if needed
      
      // Calculate the hash index for the key
      int hashIndex = hashCode(key);
      
      // Handle collisions (linear probing)
      while (hashArray[hashIndex] != null) {
         // Move to the next cell
         hashIndex++;
         // Wrap around the table if needed
         hashIndex %= SIZE;
      }
      // Insert the new DataItem at the calculated index
      hashArray[hashIndex] = newItem;
   }
public static void main(String[] args) {
   // Call the insert function with different keys to populate the hash table
   insert(42); // Insert an item with key 42
   insert(25); // Insert an item with key 25
   insert(64); // Insert an item with key 64
   insert(22); // Insert an item with key 22
   // Output the populated hash table
   for (int i = 0; i < SIZE; i++) {
      if (hashArray[i] != null) {
         System.out.println("Index " + i + ": Key " + hashArray[i].key);
      } else {
         System.out.println("Index " + i + ": Empty");
      }
   }
   }
}

Output

Index 0: Key 64
Index 1: Key 25
Index 2: Key 42
Index 3: Key 22

SIZE = 4  # Define the size of the hash table
class DataItem:
    def __init__(self, key):
        self.key = key
hashArray = [None] * SIZE  # Define the hash table as a list of DataItem pointers
def hashCode(key):
    # Return a hash value based on the key
    return key % SIZE

def insert(key):
    # Create a new DataItem
    newItem = DataItem(key)
    # Initialize other data members if needed
    # Calculate the hash index for the key
    hashIndex = hashCode(key)
    # Handle collisions (linear probing)
    while hashArray[hashIndex] is not None:
        # Move to the next cell
        hashIndex += 1
        # Wrap around the table if needed
        hashIndex %= SIZE

    # Insert the new DataItem at the calculated index
    hashArray[hashIndex] = newItem
# Call the insert function with different keys to populate the hash table
insert(42)  # Insert an item with key 42
insert(25)  # Insert an item with key 25
insert(64)  # Insert an item with key 64
insert(22)  # Insert an item with key 22
# Output the populated hash table
for i in range(SIZE):
    if hashArray[i] is not None:
        print(f"Index {i}: Key {hashArray[i].key}")
    else:
        print(f"Index {i}: Empty")

Output

Index 0: Key 64
Index 1: Key 25
Index 2: Key 42
Index 3: Key 22

Delete Operation

Whenever an element is to be deleted, compute the hash code of the key passed and locate the index using that hash code as an index in the array. Use linear probing to get the element ahead if an element is not found at the computed hash code. When found, store a dummy item there to keep the performance of the hash table intact.

struct DataItem* delete(struct DataItem* item) {
   int key = item->key;

   //get the hash 
   int hashIndex = hashCode(key);

   //move in array until an empty 
   while(hashArray[hashIndex] !=NULL) {
	
      if(hashArray[hashIndex]->key == key) {
         struct DataItem* temp = hashArray[hashIndex]; 
			
         //assign a dummy item at deleted position
         hashArray[hashIndex] = dummyItem; 
         return temp;
      } 		
      //go to next cell
      ++hashIndex;
		
      //wrap around the table
      hashIndex %= SIZE;
   }  
   return NULL;        
}

Example

Following are the implementations of the deletion operation for Hash Table in various programming languages −

#include <stdio.h>
#include <stdlib.h>
#define SIZE 5 // Define the size of the hash table
struct DataItem {
   int key;
};
struct DataItem *hashArray[SIZE]; // Define the hash table as an array of DataItem pointers

int hashCode(int key) {
   // Implement your hash function here
   // Return a hash value based on the key
}
void insert(int key) {
   // Create a new DataItem using malloc
   struct DataItem *newItem = (struct DataItem*)malloc(sizeof(struct DataItem));
   if (newItem == NULL) {
      // Check if malloc fails to allocate memory
      fprintf(stderr, "Memory allocation errorn");
      return;
   }
   
   newItem->key = key;
   // Initialize other data members if needed
   
   // Calculate the hash index for the key
   int hashIndex = hashCode(key);
   
   // Handle collisions (linear probing)
   while (hashArray[hashIndex] != NULL) {
      // Move to the next cell
      ++hashIndex;
      // Wrap around the table if needed
      hashIndex %= SIZE;
   }
   
   // Insert the new DataItem at the calculated index
   hashArray[hashIndex] = newItem;
   
   // Print the inserted item''s key and hash index
   printf("Inserted key %d at index %dn", newItem->key, hashIndex);
}
void delete(int key) {
   // Find the item in the hash table
   int hashIndex = hashCode(key);
   while (hashArray[hashIndex] != NULL) {
      if (hashArray[hashIndex]->key == key) {
         // Mark the item as deleted (optional: free memory)
         free(hashArray[hashIndex]);
         hashArray[hashIndex] = NULL;
         return;
      }
      // Move to the next cell
      ++hashIndex;
      // Wrap around the table if needed
      hashIndex %= SIZE;
   }
   // If the key is not found, print a message
   printf("Item with key %d not found.n", key);
}
int main() {
   // Call the insert function with different keys to populate the hash table
   printf("Hash Table Contents before deletion:n");
   insert(1); // Insert an item with key 42
   insert(2); // Insert an item with key 25
   insert(3); // Insert an item with key 64
   insert(4); // Insert an item with key 22
   int ele1 = 2;
   int ele2 = 4;
   printf("The key to be deleted: %d and %d", ele1, ele2);
   delete(ele1); // Delete an item with key 42
   delete(ele2); // Delete an item with key 25
   // Print the hash table''s contents after delete operations
   printf("nHash Table Contents after deletion:n");
   for (int i = 1; i < SIZE; i++) {
      if (hashArray[i] != NULL) {
         printf("Index %d: Key %dn", i, hashArray[i]->key);
      } else {
         printf("Index %d: Emptyn", i);
      }
   }
   return 0;
}

Output

Hash Table Contents before deletion:
Inserted key 1 at index 1
Inserted key 2 at index 2
Inserted key 3 at index 3
Inserted key 4 at index 4
The key to be deleted: 2 and 4
Hash Table Contents after deletion:
Index 1: Key 1
Index 2: Empty
Index 3: Key 3
Index 4: Empty
#include <iostream>
using namespace std;
const int SIZE = 5; // Define the size of the hash table
struct DataItem {
   int key;
};
struct DataItem* hashArray[SIZE]; // Define the hash table as an array of DataItem pointers

int hashCode(int key) {
   // Implement your hash function here
   // Return a hash value based on the key
   
   // A simple hash function (modulo division)
   return key % SIZE;
}

void insert(int key) {
   // Create a new DataItem using new
   struct DataItem* newItem = new DataItem;
   newItem->key = key;
   // Initialize other data members if needed
   // Calculate the hash index for the key
   int hashIndex = hashCode(key);
   // Handle collisions (linear probing)
   while (hashArray[hashIndex] != nullptr) {
      // Move to the next cell
      ++hashIndex;
      // Wrap around the table if needed
      hashIndex %= SIZE;
   }
   // Insert the new DataItem at the calculated index
   hashArray[hashIndex] = newItem;
   // Print the inserted item''s key and hash index
   cout << "Inserted key " << newItem->key << " at index " << hashIndex << endl;
}
void deleteItem(int key) {
   // Find the item in the hash table
   int hashIndex = hashCode(key);
   while (hashArray[hashIndex] != nullptr) {
      if (hashArray[hashIndex]->key == key) {
         // Mark the item as deleted (optional: free memory)
         delete hashArray[hashIndex];
         hashArray[hashIndex] = nullptr;
         return;
      }
      // Move to the next cell
      ++hashIndex;
      // Wrap around the table if needed
      hashIndex %= SIZE;
   }
   // If the key is not found, print a message
   cout << "Item with key " << key << " not found." << endl;
}
int main() {
   // Call the insert function with different keys to populate the hash table
   cout<<"Hash Table Contents before deletion:n";
   insert(1); // Insert an item with key 42
   insert(2); // Insert an item with key 25
   insert(3); // Insert an item with key 64
   insert(4); // Insert an item with key 22
   int ele1 = 2;
   int ele2 = 4;
   cout<<"The key to be deleted: "<<ele1<<" and "<<ele2<<"n";
   deleteItem(2); // Delete an item with key 42
   deleteItem(4); // Delete an item with key 25
   cout<<"Hash Table Contents after deletion:n";
   // Print the hash table''s contents after delete operations
   for (int i = 1; i < SIZE; i++) {
      if (hashArray[i] != nullptr) {
         cout << "Index " << i << ": Key " << hashArray[i]->key << endl;
      } else {
         cout << "Index " << i << ": Empty" << endl;
      }
   }
   return 0;
}

Output

Hash Table Contents before deletion:
Inserted key 1 at index 1
Inserted key 2 at index 2
Inserted key 3 at index 3
Inserted key 4 at index 4
The key to be deleted: 2 and 4
Hash Table Contents after deletion:
Index 1: Key 1
Index 2: Empty
Index 3: Key 3
Index 4: Empty

public class Main {
   static final int SIZE = 5; // Define the size of the hash table
   static class DataItem {
      int key;
      DataItem(int key) {
         this.key = key;
      }
   }
   static DataItem[] hashArray = new DataItem[SIZE]; // Define the hash table as an array of DataItem objects
   static int hashCode(int key) {
      // Implement your hash function here
      // Return a hash value based on the key
      return key % SIZE; // A simple hash function using modulo operator
   }
   static void insert(int key) {
      // Calculate the hash index for the key
      int hashIndex = hashCode(key);
      // Handle collisions (linear probing)
      while (hashArray[hashIndex] != null) {
         // Move to the next cell
         hashIndex = (hashIndex + 1) % SIZE;
      }
      
      // Insert the new DataItem at the calculated index
      hashArray[hashIndex] = new DataItem(key);
      
      // Print the inserted item''s key and hash index
      System.out.println("Inserted key " + key + " at index " + hashIndex);
   }
   static void delete(int key) {
      // Find the item in the hash table
      int hashIndex = hashCode(key);
      while (hashArray[hashIndex] != null) {
         if (hashArray[hashIndex].key == key) {
            // Mark the item as deleted (optional: free memory)
            hashArray[hashIndex] = null;
            
            // Print the deleted item''s key and hash index
            return;
         }
         // Move to the next cell
         hashIndex = (hashIndex + 1) % SIZE;
      }
      // If the key is not found, print a message
      System.out.println("Item with key " + key + " not found.");
   }
public static void main(String[] args) {
   // Call the insert function with different keys to populate the hash table
   System.out.println("Hash Table Contents before deletion: ");
   insert(1); // Insert an item with key 1
   insert(2); // Insert an item with key 2
   insert(3); // Insert an item with key 3
   insert(4); // Insert an item with key 4
   int ele1 = 2;
   int ele2 = 4;
   System.out.print("The keys to be deleted: " + ele1 + " and " + ele2);
   delete(ele1); // Delete an item with key 2
   delete(ele2); // Delete an item with key 4
   // Print the hash table''s contents after delete operations
   System.out.println("nHash Table Contents after deletion:");
   for (int i = 1; i < SIZE; i++) {
      if (hashArray[i] != null) {
         System.out.println("Index " + i + ": Key " + hashArray[i].key);
      } else {
        System.out.println("Index " + i + ": Empty");
      }
     }
   }
}

Output

Hash Table Contents before deletion: 
Inserted key 1 at index 1
Inserted key 2 at index 2
Inserted key 3 at index 3
Inserted key 4 at index 4
The keys to be deleted: 2 and 4
Hash Table Contents after deletion:
Index 1: Key 1
Index 2: Empty
Index 3: Key 3
Index 4: Empty

SIZE = 5  # Define the size of the hash table

class DataItem:
    def __init__(self, key):
        self.key = key

def hashCode(key):
    # Implement your hash function here
    # Return a hash value based on the key
    return key % SIZE

def insert(key):
    global hashArray  # Access the global hashArray variable
    # Calculate the hash index for the key
    hashIndex = hashCode(key)

    # Handle collisions (linear probing)
    while hashArray[hashIndex] is not None:
        # Move to the next cell
        hashIndex = (hashIndex + 1) % SIZE

    # Insert the new DataItem at the calculated index
    hashArray[hashIndex] = DataItem(key)

    # Print the inserted item''s key and hash index
    print(f"Inserted key {key} at index {hashIndex}")

def delete(key):
    global hashArray  # Access the global hashArray variable
    # Find the item in the hash table
    hashIndex = hashCode(key)
    while hashArray[hashIndex] is not None:
        if hashArray[hashIndex].key == key:
            # Mark the item as deleted (optional: free memory)
            hashArray[hashIndex] = None
            return
        # Move to the next cell
        hashIndex = (hashIndex + 1) % SIZE

    # If the key is not found, print a message
    print(f"Item with key {key} not found.")

# Initialize the hash table as a list of None values
hashArray = [None] * SIZE
print("Hash Table Contents before deletion:")
# Call the insert function with different keys to populate the hash table
insert(1)  # Insert an item with key 1
insert(2)  # Insert an item with key 2
insert(3)  # Insert an item with key 3
insert(4)  # Insert an item with key 4
ele1 = 2
ele2 = 4
print("The keys to be deleted: ", ele1, " and ", ele2)
delete(2)  # Delete an item with key 2
delete(4)  # Delete an item with key 4

# Print the hash table''s contents after delete operations
print("Hash Table Contents after deletion:")
for i in range(1, SIZE):
    if hashArray[i] is not None:
        print(f"Index {i}: Key {hashArray[i].key}")
    else:
        print(f"Index {i}: Empty")

Output

Hash Table Contents before deletion:
Inserted key 1 at index 1
Inserted key 2 at index 2
Inserted key 3 at index 3
Inserted key 4 at index 4
The keys to be deleted:  2  and  4
Hash Table Contents after deletion:
Index 1: Key 1
Index 2: Empty
Index 3: Key 3
Index 4: Empty

Complete implementation

Following are the complete implementations of the above operations in various programming languages −

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#define SIZE 20
struct DataItem {
   int data;   
   int key;
};
struct DataItem* hashArray[SIZE]; 
struct DataItem* dummyItem;
struct DataItem* item;

int hashCode(int key) {
   return key % SIZE;
}
struct DataItem *search(int key) {
   //get the hash 
   int hashIndex = hashCode(key);  
	
   //move in array until an empty 
   while(hashArray[hashIndex] != NULL) {
	
      if(hashArray[hashIndex]->key == key)
         return hashArray[hashIndex]; 
			
      //go to next cell
      ++hashIndex;
		
      //wrap around the table
      hashIndex %= SIZE;
   }        
   return NULL;        
}
void insert(int key,int data) {
   struct DataItem *item = (struct DataItem*) malloc(sizeof(struct DataItem));
   item->data = data;  
   item->key = key;

   //get the hash 
   int hashIndex = hashCode(key);

   //move in array until an empty or deleted cell
   while(hashArray[hashIndex] != NULL && hashArray[hashIndex]->key != -1) {
      //go to next cell
      ++hashIndex;	
      //wrap around the table
      hashIndex %= SIZE;
   }
   hashArray[hashIndex] = item;
}
struct DataItem* delete(struct DataItem* item) {
   int key = item->key;
   //get the hash 
   int hashIndex = hashCode(key);
   //move in array until an empty
   while(hashArray[hashIndex] != NULL) {
	
      if(hashArray[hashIndex]->key == key) {
         struct DataItem* temp = hashArray[hashIndex]; 		
         //assign a dummy item at deleted position
         hashArray[hashIndex] = dummyItem; 
         return temp;
      }	
      //go to next cell
      ++hashIndex;
		
      //wrap around the table
      hashIndex %= SIZE;
   }      	
   return NULL;        
}
void display() {
   int i = 0;
	
   for(i = 0; i<SIZE; i++) {
      if(hashArray[i] != NULL)
         printf("(%d,%d) ",hashArray[i]->key,hashArray[i]->data);
   }
	
   printf("n");
}
int main() {
   dummyItem = (struct DataItem*) malloc(sizeof(struct DataItem));
   dummyItem->data = -1;  
   dummyItem->key = -1; 
   insert(1, 20);
   insert(2, 70);
   insert(42, 80);
   insert(4, 25);
   insert(12, 44);
   insert(14, 32);
   insert(17, 11);
   insert(13, 78);
   insert(37, 97);
   printf("Insertion done: n");
   printf("Contents of Hash Table: ");
   display();
   int ele = 37;
   printf("The element to be searched: %d", ele);
   item = search(ele);
   if(item != NULL) {
      printf("nElement found: %dn", item->key);
   } else {
      printf("nElement not foundn");
   }
   delete(item);
   printf("Hash Table contents after deletion: ");
   display();
}

Output

Insertion done: 
Contents of Hash Table: (1,20) (2,70) (42,80) (4,25) (12,44) (13,78) (14,32) (17,11) (37,97) 
The element to be searched: 37
Element found: 37
Hash Table contents after deletion: (1,20) (2,70) (42,80) (4,25) (12,44) (13,78) (14,32) (17,11) (-1,-1) 
#include <iostream>
#include <vector>
using namespace std;
using namespace std;
#define SIZE 20
struct DataItem {
   int data;
   int key;
};
std::vector<DataItem*> hashArray(SIZE, nullptr);
DataItem* dummyItem;
DataItem* item;
int hashCode(int key) {
   return key % SIZE;
}
DataItem* search(int key) {
   //get the hash 
   int hashIndex = hashCode(key);
   //move in array until an empty 
   while (hashArray[hashIndex] != nullptr) {
      if (hashArray[hashIndex]->key == key)
         return hashArray[hashIndex];
         //go to next cell
         //wrap around the table
      hashIndex = (hashIndex + 1) % SIZE;
   }
   return nullptr;
}
void insert(int key, int data) {
   DataItem* item = new DataItem;
   item->data = data;
   item->key = key;
    //get the hash 
   int hashIndex = hashCode(key);
   //move in array until an empty or deleted cell
   while (hashArray[hashIndex] != nullptr && hashArray[hashIndex]->key != -1) {
      hashIndex = (hashIndex + 1) % SIZE;
   }
   hashArray[hashIndex] = item;
}
DataItem* deleteItem(DataItem* item) {
   int key = item->key;
   int hashIndex = hashCode(key);
   while (hashArray[hashIndex] != nullptr) {
      if (hashArray[hashIndex]->key == key) {
         DataItem* temp = hashArray[hashIndex];
         hashArray[hashIndex] = dummyItem;
         return temp;
      }
      hashIndex = (hashIndex + 1) % SIZE;
   }
   return nullptr;
}
void display() {
   for (int i = 0; i < SIZE; i++) {
      if (hashArray[i] != nullptr)
         cout << " (" << hashArray[i]->key << "," << hashArray[i]->data << ")";
   }
   cout << std::endl;
}
int main() {
   dummyItem = new DataItem;
   dummyItem->data = -1;
   dummyItem->key = -1;
   insert(1, 20);
   insert(2, 70);
   insert(42, 80);
   insert(4, 25);
   insert(12, 44);
   insert(14, 32);
   insert(17, 11);
   insert(13, 78);
   insert(37, 97);
   cout<<"Insertion Done";
   cout<<"nContents of Hash Table: ";
   display();
   int ele = 37;
   cout<<"The element to be searched: "<<ele;
   item = search(ele);
   if (item != nullptr) {
      cout << "nElement found: " << item->key;
   } else {
      cout << "nElement not found" << item->key;
   }
   // Clean up allocated memory
   delete(item);
   cout<<"nHash Table contents after deletion: ";
   display();
}

Output

Insertion Done
Contents of Hash Table:  (1,20) (2,70) (42,80) (4,25) (12,44) (13,78) (14,32) (17,11) (37,97)
The element to be searched: 37
Element found: 37
Hash Table contents after deletion:  (1,20) (2,70) (42,80) (4,25) (12,44) (13,78) (14,32) (17,11) (5,1666768001)
public class HashTableExample {
   static final int SIZE = 20;
   static class DataItem {
      int data;
      int key;
      DataItem(int data, int key) {
         this.data = data;
         this.key = key;
      }
   }
   static DataItem[] hashArray = new DataItem[SIZE];
   static DataItem dummyItem = new DataItem(-1, -1);
   static DataItem item;
   static int hashCode(int key) {
      return key % SIZE;
   }
   static DataItem search(int key) {
      int hashIndex = hashCode(key);
      
      while (hashArray[hashIndex] != null) {
         if (hashArray[hashIndex].key == key)
            return hashArray[hashIndex];
         
         hashIndex = (hashIndex + 1) % SIZE;
      }
      return null;
   }
   static void insert(int key, int data) {
       DataItem item = new DataItem(data, key);
       int hashIndex = hashCode(key);
   
       while (hashArray[hashIndex] != null && hashArray[hashIndex].key != -1) {
           hashIndex = (hashIndex + 1) % SIZE;
       }
       hashArray[hashIndex] = item;
   }
   static DataItem deleteItem(DataItem item) {
      int key = item.key;
      int hashIndex = hashCode(key);
      while (hashArray[hashIndex] != null) {
          if (hashArray[hashIndex].key == key) {
              DataItem temp = hashArray[hashIndex];
              hashArray[hashIndex] = dummyItem;
              return temp;
          }
      
          hashIndex = (hashIndex + 1) % SIZE;
      }
      return null;
   }
   static void display() {
      for (int i = 0; i < SIZE; i++) {
         if (hashArray[i] != null)
            System.out.print(" (" + hashArray[i].key + "," + hashArray[i].data + ")");
      }
      System.out.println();
   }
public static void main(String[] args) {
   insert(1, 20);
   insert(2, 70);
   insert(42, 80);
   insert(4, 25);
   insert(12, 44);
   insert(14, 32);
   insert(17, 11);
   insert(13, 78);
   insert(37, 97);
   System.out.print("Insertion done");
   System.out.print("nContents of Hash Table:");
   display();
   int ele = 37;
   System.out.print("The element to be searched: " + ele);
   item = search(37);
   
   if (item != null) {
      System.out.println("nElement found: " + item.key);
   } else {
      System.out.println("nElement not found");
   }
   deleteItem(item);
   System.out.print("Hash Table contents after deletion:");
   display();
   }
}

Output

Insertion done
Contents of Hash Table: (1,20) (2,70) (42,80) (4,25) (12,44) (13,78) (14,32) (17,11) (37,97)
The element to be searched: 37
Element found: 37
Hash Table contents after deletion: (1,20) (2,70) (42,80) (4,25) (12,44) (13,78) (14,32) (17,11) (-1,-1)

SIZE = 20
class DataItem:
    def __init__(self, data, key):
        self.data = data
        self.key = key
# Initialize the hash array with None values
hashArray = [None] * SIZE
# Create a dummy item to mark deleted cells in the hash table
dummyItem = DataItem(-1, -1)
# Variable to hold the item found in the search operation
item = None
# Hash function to calculate the hash index for the given key
def hashCode(key):
    return key % SIZE
# Function to search for an item in the hash table by its key
def search(key):
    # Calculate the hash index using the hash function
    hashIndex = hashCode(key)
    # Traverse the array until an empty cell is encountered
    while hashArray[hashIndex] is not None:
        if hashArray[hashIndex].key == key:
            # Item found, return the item
            return hashArray[hashIndex]
        # Move to the next cell (linear probing)
        hashIndex = (hashIndex + 1) % SIZE

    # If the loop terminates without finding the item, it means the item is not present
    return None
# Function to insert an item into the hash table
def insert(key, data):
    # Create a new DataItem object
    item = DataItem(data, key)
    # Calculate the hash index using the hash function
    hashIndex = hashCode(key)
    # Handle collisions using linear probing (move to the next cell until an empty cell is found)
    while hashArray[hashIndex] is not None and hashArray[hashIndex].key != -1:
        hashIndex = (hashIndex + 1) % SIZE
    # Insert the item into the hash table at the calculated index
    hashArray[hashIndex] = item
# Function to delete an item from the hash table
def deleteItem(item):
    key = item.key
    # Calculate the hash index using the hash function
    hashIndex = hashCode(key)
    # Traverse the array until an empty or deleted cell is encountered
    while hashArray[hashIndex] is not None:
        if hashArray[hashIndex].key == key:
            # Item found, mark the cell as deleted by replacing it with the dummyItem
            temp = hashArray[hashIndex]
            hashArray[hashIndex] = dummyItem
            return temp
        # Move to the next cell (linear probing)
        hashIndex = (hashIndex + 1) % SIZE

    # If the loop terminates without finding the item, it means the item is not present
    return None
# Function to display the hash table
def display():
    for i in range(SIZE):
        if hashArray[i] is not None:
            # Print the key and data of the item at the current index
            print(" ({}, {})".format(hashArray[i].key, hashArray[i].data), end="")
        else:
            # Print ~~ for an empty cell
            print(" ~~ ", end="")
    print()
if __name__ == "__main__":
    # Test the hash table implementation
    # Insert some items into the hash table
    insert(1, 20)
    insert(2, 70)
    insert(42, 80)
    insert(4, 25)
    insert(12, 44)
    insert(14, 32)
    insert(17, 11)
    insert(13, 78)
    insert(37, 97)
	print("Insertion done")
	print("Hash Table contents: ");
    # Display the hash table
    display()
    display()
    # Search for an item with a specific key (37)
    item = search(37)

    # Check if the item was found or not and print the result
    if item is not None:
        print("Element found:", item.data)
    else:
        print("Element not found")

    # Delete the item with key 37 from the hash table
    deleteItem(item)

    # Search again for the item with key 37 after deletion
    item = search(37)

    # Check if the item was found or not and print the result
    if item is not None:
        print("Element found:", item.data)
    else:
        print("Element not found")

Output

~~  (1, 20) (2, 70) (42, 80) (4, 25) ~~  ~~  ~~  ~~  ~~  ~~  ~~  (12, 44) (13, 78) (14, 32) ~~  ~~  (17, 11) (37, 97) ~~ 
Element found: 97
Element not found

Advertisements

”;

Leave a Reply

Your email address will not be published. Required fields are marked *